## Conversion

## - Round electric cable, wire, and wiring

- Cable diameter to circle cross-sectional area and vice versa -

Cross section is just a two-dimensional view of a slice through an object.
An often asked question: How can you convert the diameter of a round wire $d$ to the circle cross section surface or the cross-section area $A$ (slice plane) to the cable diameter $d$ ? Resistance varies inversely with the cross-sectional area of a wire.

Litz wire consisting of many thin wires need a 14 \% larger diameter compared to a massive wire.

Cross section is an area.
Diameter is a linear measure. That cannot be the same.

Calculation of the cross section $A$, entering the diameter $d$ :

$$
\begin{gathered}
A=r^{2} \cdot \pi=\frac{d^{2} \cdot \pi}{4} \approx 0.7854 \cdot d^{2} \\
r=\text { radius of the wire or cable } \\
d=\text { diameter of the wire or cable }
\end{gathered}
$$

Calculation of the diameter $r$, entering the cross section $A$ :

$$
d=2 \cdot \sqrt{\frac{A}{\pi}}=2 r \approx 1.1284 \cdot \sqrt{A}
$$

There is no exact formula for the minimum wire size from the maximum amperage. It depends on many circumstances, such as for example, if the calculation is for DC, AC or even for three-phase current, whether the cable is released freely, or is placed under the ground. Also, it depends on the allowable current density and the allowable voltage drop, and whether solid or litz wire is present. And there is always the nice but unsatisfactory advice to use for security reasons a thicker and hence more expensive cable. Common questions are about the voltage drop on wires.

## Voltage drop $\Delta V$

The voltage drop formula with the specific resistance (resistivity) rho $\rho$ ist:

$$
\Delta V=I \cdot R=I \cdot(2 \cdot 1 \cdot \rho / A)
$$

$I=$ Current in ampere
$l=$ Wire (cable) length in meters (times 2, because there is always a return wire)
$\rho=$ rho, electrical resistivity (also known as specific electrical resistance or volume resistivity) of copper $=0.01724 \mathrm{ohm} \cdot \mathrm{mm}^{2} / \mathrm{m}$
(Ohms for $l=1 \mathrm{~m}$ length and $A=1 \mathrm{~mm}^{2}$ cross section area of the wire) $\rho=1 / \sigma$
$A=$ Cross section area in $\mathrm{mm}^{2}$
$\sigma=$ sigma, electrical conductivity (electrical conductance) of copper $=58 \mathrm{~S} \cdot \mathrm{~m} / \mathrm{mm}^{2}$
Quantity of resistance

| $R=\rho \cdot \frac{l}{A}$ |  |
| :--- | :--- |
| $R=$ resistance | $\Omega$ |
| $\rho=$ specific resistance | $\Omega \cdot \mathrm{m}$ |
| $l=$ length of the cable | m |
| $A=$ cross section | $\mathrm{m}^{2}$ |


| metal | Electrical conductivity |  |
| :--- | :---: | :---: |
|  | Electrical resistivity |  |
| Electrical conductance | Specific resistance |  |
| copper | $\sigma=58$ | $\rho=0.0172$ |
| aluminium | $\sigma=36$ | $\rho=0.0277$ |
| silber | $\sigma=62$ | $\rho=0.0161$ |


| Electrical conductivity $\sigma$ : |  | Specific elec. resistance $\rho$ : |
| :---: | :---: | :---: |
| $58 \mathrm{~S} \cdot \mathrm{~m} / \mathrm{mm}^{2}$ |  | ${ }^{0.017241} \mathrm{Ohm} \cdot \mathrm{mm}^{2} / \mathrm{m}$ |
| $\sigma=1 / \rho$ |  | $\rho=1 / \sigma$ |

The value of the electrical conductivity (conductance) and the specific electrical resistance (resistivity) is a temperature dependent material constant. Mostly it is given at 20 or $25^{\circ} \mathrm{C}$.

## Resistance = resistivity x length / area

The specific resistivity of conductors changes with temperature.
In a limited temperature range it is approximately linear:
$\rho(T)=\rho\left(T_{0}\right) \cdot\left(1+\alpha \cdot\left(T-T_{0}\right)\right)$
where $\alpha$ is the temperature coefficient, $T$ is the temperature and $T_{0}$ is any temperature,
such as $T_{0}=293.15 \mathrm{~K}=20^{\circ} \mathrm{C}$ at which the electrical resistiv ity $\rho\left(T_{0}\right)$ is known.

## Calculator: Ohm's law

## Table of typical loudspeaker cables

| Cable diameter d | 0.798 | 0.977 | 1.128 | 1.382 | 1.784 | 2.257 | 2.764 | 3.568 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| mm |  |
| Cable nominal cross | 0.5 | 0.75 | 1.0 | 1.5 | 2.5 | 4.0 | 6.0 | 10.0 |
| section $A$ | $\mathrm{~mm}^{2}$ |
| Maximum electrical <br> current | 3 A | 7.6 A | 10.4 A | 13.5 A | 18.3 A | 25 A | 32 A | - |

Always consider, the cross section must be made larger with higher power and higher length of the cable, but also with lesser impedance.

Here is a table to tell the possible power loss.

| Cable <br> length in $m$ | Section in $\mathrm{mm}^{2}$ | Resistance in ohm | Power loss at |  | Damping factor at |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Impedance Impedance |  | Impedance Impedance |  |
|  |  |  | 8 ohm | 4 ohm | 8 ohm | 4 ohm |
| 1 | 0.75 | 0.042 | 0.53\% | 1.05\% | 98 | 49 |
|  | 1.50 | 0.021 | 0.31\% | 0.63\% | 123 | 62 |
|  | 2.50 | 0.013 | 0.16\% | 0.33\% | 151 | 75 |
|  | 4.00 | 0.008 | 0.10\% | 0.20\% | 167 | 83 |
| 2 | 0.75 | 0.084 | 1.06\% | 2.10\% | 65 | 33 |
|  | 1.50 | 0.042 | 0.62\% | 1.26\% | 85 | 43 |
|  | 2.50 | 0.026 | 0.32\% | 0.66\% | 113 | 56 |
|  | 4.00 | 0.016 | 0.20\% | 0.40\% | 133 | 66 |
| 5 | 0.75 | 0.210 | 2.63\% | 5.25\% | 32 | 16 |
|  | 1.50 | 0.125 | 1.56\% | 3.13\% | 48 | 24 |
|  | 2.50 | 0.065 | 0.81\% | 1.63\% | 76 | 38 |
|  | 4.00 | 0.040 | 0.50\% | 1.00\% | 100 | 50 |
| 10 | 0.75 | 0.420 | 5.25\% | 10.50\% | 17 | 9 |
|  | 1.50 | 0.250 | 3.13\% | 6.25\% | 28 | 14 |
|  | 2.50 | 0.130 | 1.63\% | 3.25\% | 47 | 24 |
|  | 4.00 | 0.080 | 1.00\% | 2.00\% | 67 | 33 |
| 20 | 0.75 | 0.840 | 10.50\% | 21.00\% | 9 | 5 |
|  | 1.50 | 0.500 | 6.25\% | 12.50\% | 15 | 7 |
|  | 2.50 | 0.260 | 3.25\% | 6.50\% | 27 | 13 |
|  | 4.00 | 0.160 | 2.00\% | 4.00\% | 40 | 20 |

The damping factor values show, what remains of an accepted damping factor of 200 depending on the cable length, the cross section, and the impedance of the loudspeaker.

## Conversion of cable diameter to AWG and AWG to cable diameter in mm

The gauges we most commonly use are even numbers, such as $18,16,14$, etc.
If you get an answer that is odd, such as 17, 19, etc., use the next lower even number.
AWG stands for American Wire Gauge and refers to the strength of wires. These AWG numbers show the diameter and accordingly the cross section as a code. They are only used in the USA. Sometimes you find AWG numbers also in catalogues and technical data in Europe.

| AWG number | 46 | 45 | 44 | 43 | 42 | 41 | 40 | 39 | 38 | 37 | 36 | 35 | 34 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Diameter in inch | 0.0016 | 0.0018 | 0.0020 | 0.0022 | 0.0024 | 40.0027 | 0.0031 | 0.0035 | 0.0040 | 0.0045 | 0.0050 | 0.0056 | 0.0063 |
| Diameter ( $\varnothing$ ) in mm | 0.04 | 0.05 | 0.05 | 0.06 | 0.06 | 0.07 | 0.08 | 0.09 | 0.10 | 0.11 | 0.13 | 0.14 | 0.16 |
| Cross section in $\mathrm{mm}^{2}$ | 0.001 | 0.0016 | 0.0020 | 0.0025 | 0.0029 | 0.0037 | 0.0049 | 0.0062 | 0.0081 | 0.010 | 0.013 | 0.016 | 0.020 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AWG number | 33 | 32 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 |
| Diameter in inch | 0.0071 | 0.0079 | 0.0089 | 0.0100 | 0.0113 | 0.0126 | 0.0142 | 2.0159 | 0.0179 | 0.0201 | 0.0226 | 0.0253 | 0.0285 |
| Diameter ( $\varnothing$ ) in mm | 0.18 | 0.20 | 0.23 | 0.25 | 0.29 | 0.32 | 0.36 | 0.40 | 0.45 | 0.51 | 0.57 | 0.64 | 0.72 |
| Cross section in $\mathrm{mm}^{2}$ | 0.026 | 0.032 | 0.040 | 0.051 | 0.065 | 0.080 | 0.10 | 0.13 | 0.16 | 0.20 | 0.26 | 0.32 | 0.41 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AWG number | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 |
| Diameter in inch | 0.0319 | 0.0359 | 0.0403 | 0.0453 | 0.0508 | 8.0571 | 0.0641 | 10.0719 | 0.0808 | 0.0907 | 0.1019 | 0.114 | 0.1285 |
| Diameter ( $\varnothing$ ) in mm | 0.81 | 0.91 | 1.02 | 1.15 | 1.29 | 1.45 | 1.63 | 1.83 | 2.05 | 2.30 | 2.59 | 2.91 | 3.26 |
| Cross section in $\mathrm{mm}^{2}$ | 0.52 | 0.65 | 0.82 | 1.0 | 1.3 | 1.7 | 2.1 | 2.6 | 3.3 | 4.2 | 5.3 | 6.6 | 8.4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| AWG number | 7 | 6 | 5 | 4 | 3 | 2 | 1 | $\begin{gathered} 0 \\ (1 / 0) \\ (0) \end{gathered}$ | $\begin{gathered} 00 \\ (2 / 0) \\ (-1) \end{gathered}$ | $\begin{gathered} 000 \\ (3 / 0) \\ (-2) \end{gathered}$ | $\begin{gathered} 0000 \\ (4 / 0) \\ (-3) \end{gathered}$ | $\begin{gathered} 00000 \\ (5 / 0) \\ (-4) \end{gathered}$ | $\begin{gathered} 000000 \\ (6 / 0) \\ (-5) \end{gathered}$ |
| Diameter in inch | 0.1443 | 0.1620 | 0.1819 | 0.2043 | 0.2294 | 40.2576 | 0.2893 | 3.3249 | 0.3648 | 0.4096 | 0.4600 | 0.5165 | 0.5800 |
| $\begin{aligned} & \text { Diameter (Ø) } \\ & \text { in } \mathrm{mm} \end{aligned}$ | 3.67 | 4.11 | 4.62 | 5.19 | 5.83 | 6.54 | 7.35 | 8.25 | 9.27 | 10.40 | 11.68 | 13.13 | 14.73 |
| Cross section in $\mathrm{mm}^{2}$ | 10.6 | 13.3 | 16.8 | 21.1 | 26.7 | 33.6 | 42.4 | 53.5 | 67.4 | 85.0 | 107.2 | 135.2 | 170.5 |

